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SUBSONIC AND SUPERSONIC FLOW AROUND

NONAXISYMMETRIC FUSELAGES*

Hermann Rothman**

ABSTRACT. Description of a method for calculating the
flow about nonaxisymmetric bodies in subsonic and supersonic
flow. The bodies are constructed by means of the stream-
lines on their surface. Source, dipole, and quadrupole sin-
gularities are assumed on a curved camberline; the differen-
tial equations for the streamlines are derived and are numeri-
cally integrated. At the tip of the body, which is the initial
point of the integration as well as a singular point of the
differential equations, the problem can be solved by a trans-
formation to "conical" coordinates. Different cross-sections
and longitudinal sections of the body can be produced by vary-
ing the source, dipole, and quadrupole strengths as well as the
"camber" of the camberline. This method seems to be particularly
suitable in cases in which the streamlines are of interest.
Using this method, the pressure distribution and the air forces
on bodies can be determined.

1. INTRODUCTION

The theory of flow around aerodynamic bodies has gained in importance over

the last few years. Primarily, non-axially symmetric body shapes are of great

interest for modern high performance aircraft. The method of superposition of

singular integrals in the solution of the linearized gasdynamic fundamental

equations, which was first used by Th. von Kgrmdn [1] and M.M. Munk [2,3], has
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been extended and improved in various ways.

The calculation of the axisymmetric flow goes back to the work of

F. Weinig [4] and M.M. Munk [3]. They replaced the-body by a-sourceor dipole- 

distribution along the x-axis and satisfied the boundary conditions along the

body axis in an approximate way. This method was then extended to wings having

small aspect ratio by F. Keune [5,6], K. Oswatitsch [6], W.T. Lord and /99

G.G. Brebner [7], M.C. Adams and W.R. Sears [8], J. Weber [9] and K. Gersten

[10]. M.D. Van Dyke [11,12] was able to improve the results using a second

order theory. Most of these papers deal with the "inverse" problem in which

the body shape is determined from a specified singularity distribution.

J.F. Moran [13] attacked the direct problem, based on the work of F. Vandrey

[14] and L. Landweber [15], in which the body cross section is developed into

a power series and the source distribution is found by means of an iteration.

M.M. Munk [2] and R.T. Jones [16] and G.V. Ward [17] suggested another

method of solution. They were able to show that for slender bodies, the flow

can be approximated by means of a two-dimensional potential equation. Two

methods were used for the two-dimensional problem: conformal mapping as well

as the method of covering the body contour with singularities, first used by

G.V. Ward [17]. D. Hummel [18] gives a detailed description of this method.

This paper has been stimulated by a theory given by K. Oswatitsch [19] for

the calculation of flow surfaces in a steady, three-dimensional flow. Arbi-

trary flow surfaces are selected in a parallel basic flow and its deformation

is determined using a perturbation calculation in a slightly perturbed flow.

When this method is extended to non-axisymmetric bodies, it was found that the

requirement for a small perturbation of the flow surface gradient cannot be

satisfied in the vicinity of the axis.

In the present paper we, therefore, give a new method of calculating

aerodynamic bodies in a frictionless flow free of heat conduction using stream-

lines along their surface. A covering by singularities consisting of sources,

dipole-& and quadrupoles over a prescribed skeleton line is assumed. The
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Fig. 1. Specification of the x, r' o

coordinate system of the velocity com-
ponents across the cross section as
well as the upper limits in Equation
3.4).

differential equations for the stream-

lines are established and integrated

numerically. Using the equivalence

law of Oswatitsch and Keune [6], the

calculation of the drag, lift and the

region near acoustic velocity can be

considerably simplified or can be

reduced to a rotationally symmetric

problem. The method can be trans-

ferred to special cases in which the

streamline course is of interest,

such as, for example, in non-steady

flows or in boundary layer theory.

2. DERIVATION OF THE BASIC EQUATIONS

In the following, it is assumed that the basic flow is in the x-direction,

even for problems at which there is incidence. Let ' = const be a flow surface.

The following condition follows from the condition that the velocity vector must

lie along this surface:

w grad Y = 0. (2.1)

The characteristic line of such a differential equation is the streamline:

x(t(t), t), z(t), (2.2)

where t can be an arbitrary parameter. From ' = const]by differentiation, it

follows that

d'l' at/ ate v
d-= ax + '_ ayt , + -oi'-z,,63-X 5" 3 z..

and Equations (2.1) and (2.3) lead to the following system of differential

equations for the streamlined

(2 .4)Y =- f (x, y, z) V,

zt - f (x, y, z) ,.

3
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The function f (x, y, z) can be selected arbitrarily. u, v, w are the dimen-

sionless perturbation velocity components, made dimensionless by means of the

incident velocity u . If we then ignore the perturbation velocity u compared

with the incident velocity u , as is done when boundary conditions are treated

in the linearized subsonic and supersonic problems, then Equation (2.4) can be

simplified and with t = x and f (x, y, z) = 1 we find:

_ = (2.5)

In the subsonic range, the flow conditions in the immediate vicinity of the

stagnation point are not correctly represented when this simplification is in-

troduced. However, this approximation is quite good for fuselages. For the

further development, it is more convenient to use the coordinates shown in

Figure 1.

The following relationships hold for the new coordinates (x, r','i'1):

-2 -- :- k (x)2 -- z, 0'arc tan- * - (2.6)

where the covered line is given by y = k(x), z = 0. It was found that a

continuous distribution of singularities along y = k(x) is more advantageous

than covering the x-axis. It is then also possible to have incidence angles

larger than the tip angle. Using the transformation equations for the velocity

components shown in Figure 1

(o, - v cos O''- W sin 1', 

ow2 = -- v sin ' + lo cos O (2.7)

we obtain the following system of differential equations for the streamlines

from (2.5) and the derivative of Equation (2.6) with respect to x: /100

' ). , -- ', (l) co:; d', (2.8)

r1,\. ' , ' i - x(2.9)

rls ··; k,·li n l' I· l,) 2.9
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3. CALCULATION OF THE VELOCITY COMPONENTS IN THE VICINITY OF THE AXIS

By arranging source, dipole and quadrupole singularities of various inten-

sities along the curve skeleton line, it becomes possible to influence the

cross sectional shape of the body to be defined. Assuming small perturbations

in the irrotational flow, the following equations hold:

(1 --M\ 2) -'8i- + -- + = 0, (3.1)

U S2 31C°( C CU C ) v 3a;}

Oy oX oaz -x y z- (3.2)

where the velocity vector is the gradient of a potential p (x, y, z) according

to Equation (3.2).

We will first start with the source solution. As the initial potential

we use the following integral representations in the subsonic and supersonic

ranges:

1M<
QM.,: (p8 =.---1 JQ (t X ( (3.3)

1- t t f2 [ k

2 X £. ($) X (3.4)

dlt
x .. . ....... -, . ........ .............

I((x>' - cot2' [(y - k ())2 -z2]

where,= /i-- ,T,/ ,-and cot= -j/M"--§ MO is the Mach number of the incident

flow and F (x) and Q (x) are proportional to the cross sectional area. The

upper integration limit xl will be described in more detail when we deal with

the subsonic case.

It is more convenient to set B = 1 for the remainder of the treatment.

The results can then be transferred without difficulty to arbitrary Mach

numbers using the Prandtl-Glauert analogy. When one approaches the covered

axis y + k (x), z -+ 0, the integrands in (3.3) and (3.4) increase indefinitely.
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In order to investigate the behavior in the vicinity of the axis, k (C) is

expanded at the point C = x:

k ( - k (x) + k, (x)( - x) +

2

and the integral (3.3) is split into two parts by adding Q x(x), similar to

what was done in a paper by Oswatitsch and Keune [6]. Assuming that k (x)<< 1,

which must already be prescribed due to the assumption of small perturbations,

we then obtain:

f/.0 :-x--X

4 ;. 

r ,1a .
f l/(X : -22k(y- k (x))( - x): r'2 (36)

(3.6)

', Q, () - Q, (-X)
4 1- /(x -)--2 k,(y k) (-x) + r

I{

The second integral remains regular during the transition to the limit r' + O.

The first integral can be simply integrated:

Q_ (x)In 4 x(1 - x)
'P 4 = - - -

-2I 1 l °'(') Q'(r~da(3.7)

0

We find the following results for the velocity components:

v cos 79'w= ;sin#O'2,.r' 2 ' (3.8)

Qa
WI= , 0.
We require the u component of the velocity for the further calculation of the

We require the u component of the velocity for the further calculation of the

pressure coefficient. It is obtained from (3.3) by differentiation with

respect to x:

* [ Q,( ,( (x-. .- _'. ____ -... (3.9)
' 4, [(x-- ) 2 k0,- x)(y - k)+r'] i

0
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After substitution of the Taylor series development (3.5) and expanding the

numerator [y - k (x)] k (x), (3.9) can be divided into two partial integrals

I, and I2:
1

fl'-- - x

1
2- - 4X

f [x 2- ,)_ _ 2 _x) (y - k) k-, + r']3:' (3.10)
0

4

·5 QX (Q ) (y - k) k,
[(x :)e - 2 ij(i: x) (? - k).+ r'"2,

After a partial integration (because Qx (O) = Q1 (1) = O the integrated part

vanishes), the integral Il becomes an integral having the same form as (3.3).

The second integral can be treated just like (3.6) by adding and subtracting

Qx (x). We finally obtain the following results for the u component:

- _ 1 i4 x (I - x)

.1 ' k,cos;o'
.2a r (3.12)

i.: Q. (. -.Q I(x ,
.

The second expression shows the influence of the covering of a curved line /101

that has the same form as the u component of an incidence potential with k

as the local cross section incident flow.

3.1. Supersonic Case

As can be seen from Figure 1, the upper limit x 1 is found by setting the

denominator in (3.4) equal to:

(x . '- x-' {y -- k (x)]'-"- z-I } cot2 C . (3.13)
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For r' -+ 0, (3.13) can be simplified by means of a Taylor expansion at the

point x = x1 and xl can be explicitly calculated:

x, =x-- ( + k. cot cos'i' +l

-I ... j (3.14)
2 k. cot" , cos$ )

' I cot .a 

By expansion of the upper limit and a similar simplification of the integrand

as was done in the subsonic case, the properties of the integral (3.4) are not

changed. Corresponding to (3.7), we obtain the following result:

'To = -F, (x) in (cot a r') ± S (x) (3.15)

where S (x) contains all terms which only depend on x. The following is then

found for the velocity components:

v 2 -- ; F, (x) cos ', -V = --- F sin' (3.16)

For the calculation of the u component, the denominator of (3.4) is again

developed into a series and expanded to a complete square. The potential, by

means of the transformation

= Arco cot cot cos r (3.17)

is transformed into the form:

0'

F, (x.- r' k, cot a cos V'-

a - r' cot a coshi.)d,). (3.18)

a = Arcosl(,---X- -k cot a cos ').

The integrand vanishes at the lower limit, so that the derivative with respect

to x and the following reverse transformation become very simple:

-up"-k, cos D' + . In cot a --
:iZ; ? - .. 2, 2X

-. 1. F bFrx() -Frf(x) A (3.19)
2:j K,-xj

:;
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A comparison of (3.16) and (3.15) with (3.8) and (3.7), respectively, shows

that the v and w component as well as the part of the potential dependent on

y, z are identical for the subsonic and supersonic case. This agreement is

also a direct consequence of the theory of Jones. The cross section flow does

not depend on the Mach number within the framework of our approximation.

Only the part of the source potential which depends on y, z is important for

the derivation of the higher singularities. Therefore, in the remaining calcu-

lation we can restrict ourselves to the subsonic case.

3.2. Dipole and Quadrupole Singularity

The dipole and quadrupole potential is given by the second and third term

of the general solution of (3.1):

(3.20)

(. . ( 

It can be shown that differentiation and transfer to the limit (r' + O0) can be

interchanged in (3.3). We obtain the following for the dipole or quadrupole

potential in the vicinity of the axis from (3.7):

cosM9, () -N cos 2 0'
)cos d c, IP/oNs--- , x) i (3.21)

where M (x) is the dipole moment and N (x) is the quadrupole intensity. From

(3.21), the following is obtained for the dipole velocity components:

M,(x)') M k. (3.22)
41 = -2-- ri cos 1 + --- ;':'- cos2V ', 

Zos t, = - ,,-co D', sin 0' (3.23)

and the following is obtained for the quadrupole velocity components:

9



1 cos 2'
ul = -. N(x)--- ; . '.. (3.24)

_ 2 N cos ' (cos 2-' - 3 sin 2 0')

2
Wl...=. N cos 2 0', w= - N sin 2 '. (3.25)

gra r'yo

From (3.7) it is seen that the x-dependence of the potential in the vicinity

of the axis is the same as for a body of revolution having the same cross

sectional surface Q (x). This theorem of an "equivalent" body of revolution

was first given by Oswatitsch and Keune [6] in the treatment of bodies at zero

incidence within the area of linearization of the gas dynamic equations. It

was first given by Oswatitsch [20] for the velocity range near sonic velocity.

4. CONICAL FLOW AT THE BODY TIP

Except for certain special cases, for example, such as the body of revo-

lution at incidence, the two differential equations for the streamlines (2.8)

and (2.9) can only be integrated numerically. The initial conditions are spe-

cified at the body tip: x = 0: r' = 0, '= 90o' . The streamlines originate

at the body tip and the integration difficulties consist of the fact that the

system of differential Equations (2.8) or (2.9), respectively, [ha!s a singular

point, a bifurcation point, there. The problem can be treated as a conical

problem within a small vicinity of the tip and can be solved analytically by

means of a Taylor expansion or corresponding trial solutions for the functions

Q (x), M (x), N (x), k (x).

If the individual singularity components are introduced in (2.8) or (2.9)

for the velocity components wl and w2, then the following two differential

equations are obtained:

x = ;I, -k (4.1) /102

M 2 N
.- ,.;co;'-1-, + co,; 2 0',

2:r1 -/ i .

.. ' N( (4.2)'7tx .... siri 2 d'.
1\ -;
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The following trial solutions are used for the covered line as well as for the

individual singularity intensities:

Q (x) = C, 7 2- X'- (1-X)2,

Al (x) = - 2a,, z:' a x2 (1 - x) 2 (1 - 2x),

N (.) = -. I" ,7 x3 (1 - X)' (I - 2 x),
2

k (x) = ak T x (1 -- x).

(4.3)

In certain special cases other trial solutions will have to be used. The free

selection of the individual singularity intensities is a consequence of the

"inverse" problem formation, i.e., it is not the body but the singularity

covering law which is prescribed.

In the vicinity of the body tip, Equation (4.3) can be

means of an expansion for x:

Q (x) = no 72 lZ X2, k (x) = a} T X,

M (x) = -- 2 an 13 ;1 =X2, N (x) = -- T- T4 S X3 ,
2

and from (4.1) and (4.2), re,

dr'
d-

d9' \n
d \ r'

spectively, we obtain:

x
0

2' -- 
r

-- A a) r ; . cos 2 o

'

- + a ri) sin o'+ a/ - 4 sin 2 D'.
.Y~)

simplified by

(4.4)

(4.5)

(4.6)

(4.7)

The equations have already been divided by the thickness parameter T. In the

following we will always use r' for r'/T. It is now expedient to introduce a

conical coordinate i:

r~ I- dr' dcr r - 'xd dx
I x IX ax (4.8)

and to transform (4.6) to this new coordinate:

x-, -. -- i k cos ' M -i 
dx

+ ·- cos ' -- cos 2 i' -- ,

(4.9)
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1,0

o,s

iA

1

-7,05 ' - I -~~~~~~~~~~~~~

Fig. 2.
solution

For simpli

covering (

where Ak, AD and Af are given by

ak/aO, aD/a0 3 and af/a04, respectively.

We will first consider the top and bot-

tom streamlines i'"= 0 (upper sign in

(4.10) and i'II= Tr (lower sign). Then

4,5 -1O 1,5 (4.7) is satisfied identically. The

Source-dipole singulaity; I following ordinary differential equa-

of the equation A,,-F(,,)J tion is obtained from (4.9)
Ak 0,7 , ,, A

IReprOdocedb frompy @\ fx ;- i Al) +.A. -g- , (4, 1(

Lcity we will confine our discussion of (4.10) to a source dipole

(A, = O). The treatment with an additional quadrupole singularity as

well as with a pure source flow (AD = Af = O) is equivalent. x = 0 is a singu-

lar point of (4.10). If the differential quotient is to remain finite, then

the right side must vanish. We obtain two cubic equations for t, (i' - o) and

Il (0' ,-n) (lower sign):
±:' A,, t2 - + A,, o0'. (4.11)

Figure 2 shows the inverse function AD =

,, -" "' '_-' 0,',
"'r ~~ ~- 0 25

- I ~ ~ )rfrI

_ _ _ _ _ _ _ _ _ ~ I _ _ i I X2

I T I q-. ~ . _77 . . i ~ I .. .

.- r~~~~~~~~~-- 'e

0,1 0,2 0,3 4 0,5

Fig. 3. Source-dipole singularity;
stream lines for various dipole and
source strengths. Thin lines:
A = 0.75, thick lines: Ak = 1.2.

= AD (2). The negative curve part

(AD < 0) corresponds to dipoles which

blow downwards and are not of any con-

sequence in the further discussion.

The point P (AD = O) corresponds to

the source flow. As the dipole inten-

sity is increased, T2 continues to be-

come smaller, i.e., the lower streami-
I

line ;IJ = w approaches the covered

axis given by 52 = 0.

Figure 3 shows the two stream-

lines ,'j = 0 and DI'= i for various

values of AD and Ak. For AD>AD
max

12
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Fig. 4. Streamlines and bodies for Fig. 5. Streamlines and bodies for
a source singularity, Ak = 0.75. a source dipole singularity,

Ak = 0.75, AD = 0.55.

no real positive solution exists for

C2. Therefore, it is not possible

to lift the lowest body streamline

up to the x-axis or above it by in-

/ creasing the dipole intensity, if the

l / ! l:/ ~ source intensity and covered line are

l: / / E t$ < /prescribed arbitrarily. This can

l/ / o ionly be done by a suitable selection

l // 0 / I of the source dipole strength or the

covered line. Figure 3 shows an ex-

ample of this by a thick line. Com-

Fig. 6. Cross section distribution parison of the v or wl components of

for a source dipole quadrupole singu-rce and the dipole (3.8) or
larity, Ak = 0.75, A = 0.55, Af = 0.2.

(3.23), respectively, shows that the 

dipole term is dominant in the vici-

nity of the axis. In addition to the "external" solution described, Figure 2

also contains a "internal" solution (the part of the curve with positive incli-

nation), which has no physical meaning.
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In order to solve the general case (4.6) or (4.7), the last equation is

transformed to the i coordinate and one finally obtains the following after

introducing a new coordinate n = cos /j9:

-i- :': (4.12)

i[I , ,i/,,,7 1! "] lI _ .. ?, .. A.. -... ......

From (4.7) it can be seen that the angle must satisfy ,d[j= 0 or n = 1 at the

body tip (x = 0, r' = 0) for all streamlines, except for the lowest one il= r.

If we set the numerator in (4.12) equal to zero, then we obtain an equation for

determining C1. This makes the initial condition n = 1: Z = C 1 a simultaneous

singular point of (4.12). In order to obtain an analytical solution in the

vicinity of this point, we use the following trial solution:

= .l-i C (1 - i)'"- (4.13)

By comparing coefficients, we obtain the following from (4.12) for the constants

a and C:

a= , C = - A - -_ 4 A,)
6 AA'I +3A /i- 32 i+ 5 ,4j (4.14)

We must still find a corresponding solution for x = x (n) in the vicinity of

the body tip. The following differential equation can be derived from (4.10)

and (4.12) dx x 1
d~, .,; -2) [' (:A,. ,' + AD) + 2 77 At] (4.15)

After introducing the trial solution (4.13) we can integrate without any dif-

ficulty:
X = "S (1 - 1)'"

4

2 [$, (A/, :"2 +- AD) + 2 Al] (4.16)

By a corresponding selection of the free integration constant K3 , we find that

the individual streamlines can be transformed into each other by compression

with is a characteristic property of conical flows.

14



5. GENERAL FLOWS

If these trial solutions (4.3) are introduced into (4.1) and (4.2), the

following equations are obtained for the streamlines:

eX ;.- ' X- -X(x)(I X)

n-(1 -2 x) X (at ,--.,- 
a

) cos (0 -+ (5.1)

;, r / .... _ cos 2 }

-'--no'(- 2 x) + +
tdX L r 1 (5.2)

7,x (;- X)2 2aIx/ (1-x)3 

These differential equations can only be integrated numerically in a general

These differential equations can only be integrated numerically in a general

case. The analytical solution is attached to it in the vicinity of the singu-

lar initial point. It is found that the solution is only modified slightly by

displacing the transition point. Figure 4 shows the streamlines for a source

covering. It is an axonometric representation in which body cross sections in

the planes x = const remain undistorted. We can also observe the emergence of

all streamlines from the tip at angle zero. Figure 5 shows a body with an /104

additional dipole distribution. Because of the dipoles, the streamlines are

pushed onward faster and the entire body is lifted upwards. Figure 6 shows

the influence of a quadrupole covering. The two body cross sections shown are

considerably more slender than those shown in the previous two figures.

5.1. Calculation of the Pressure Distribution

In order to calculate the pressure coefficients cp, we must consider the

quadratic terms in v and w already in the first approximation, similar to what

occurs in the rotationally symmetric case:

_:,c; ,_.-... 71 -- v? - e;:. (5.3)

The subscript G refers to the total value. In accordance with the three singu-

larity components of the total velocity components UG, VG, WG, we will also

split the pressure coefficients into three parts:

15



Cp (;= cl. 'c,- Cl; q- +C,./ ,t (5.4)

It should be noted that the mixed quadratic terms must also be included in the

last two components (such as v vD in the dipole component cpD, vD Vf in the

quadrupole component Cpf). If we substitute the corresponding equations for

the velocity components, then we find:

Source:

1 4x (1 -x)
c, = ~- Q In --i.i-

1 k, cos 9' Q. +2
+ -- Q - - +

r 4 .72 r'2

I

+ 2 Q,, (! ) - Q,.. (x)
0

(5.5)

i Ml-r
C,,, = - -- cosO M -

31- 43r2 '- 

M kos 2f Q1 M n Q, I I
- -- + -- -- cos 2 O'03 1r2 z

Quadrupole:

2 N, cos 2 2'

*1 N k,
+ -. N - (cos2 )' - 3 sin2 ,9') cos ;' -

_2 Qt N 2MN
....... .- cos 2 )' -+-- --.- cos 1'

The pressure coefficient plotted in Figurle 7 was calculated

las. The body used is the one shown in Figure 5.

(5.6)

(5.7)

using these formu-

5.2. Calculation of the Lift

As is well known, the lift can be calculated according to two methods.

This can be done by integration of the pressure coefficient over the body sur-

face or using a control surface which follows from the momentum theorem:

A J- f | ,, v> -i (p - .) Co's (n, y)] -0 ' ,1d dx. (5.8)
O1 U]

16
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It is expedient to select a small

p cylindrical surface with the radius r
O

i, | m 90° t around the covering axis as the control0,05 -I- -I
i 1500 surface. In the remainder of the calcula-

1-- · / tion we can restrict ourselves to source-

dipole singularities. It is easily shown

that the quadrupole does not make a contri-

bution based on the orthogonal relation-

ships of trigonometric functions. For the

£i0, -'s 60°,1 ! - ; pressure term (p - pa) we can substitute

Il __ ___ | ,,";' the pressure coefficient multiplied by the

incident stagnation pressure q . Using the

0,10 a? o. I formula for the velocity component in the
6,2, o,4 0,6

X direction of the surface normal
Fig. 7. Pressure distribution
of the body shown in Figure 5 (5*9)
for source-dipole singularity,
Ak = 0.75, AD = 0.55. we obtain the final result:

1 2o
A=2q.f- ji k, (I+cos 2 ') +

o L 2 + ) (5.10)

cos 2 0' nd
+(3 Q( k, - M)Jro do' dx.

We integrate over 'r/and the transition to the limit r 0 + 0 gives the following

simple relationship for the lift:

A -- l,, M (1) .. |(5.11)

From this it can be seen that a source-sink distribution does not produce any

lift as expected within the framework of our approximation. The dipole covering

only produces a lift force under the assumption M(1) = 0. This result is already

known from the theory of bodies of revolution. In our case, we have the further

interesting result that the semibody given by (4.3) also has no life because of

M (1/2) = 0.
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